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Abstract 

Drilling machines are essential in industrial applications as they are used to drill materials such as metal, plastic, and concrete 

and are now being incorporated into smart industries. Such machinery needs to be maintained properly given that they are 

known to wear out very quickly. In its previous form, as a manual process, monitoring has served its purpose significantly. 

Nowadays, it is replaced by automated systems that utilize achievements in signal processing and machine learning. This work 

proposes fault detection for drilling machines through sound signals and Fine K Nearest Neighbour (Fine KNN). Fine KNN 

was selected due to its moderate accuracy and computational efficiency compared to other classifiers in real-time despite a 

slightly lower accuracy than Quadratic SVM or bagged trees. The dataset employed is obtained from a GitHub repository and 

contains sound signals under various fault scenarios: healthy, bearing, gear, and fan. In feature extraction, 16 time-domain and 

frequency-domain features are extracted from the chosen signal and then narrowed down to 12 by using the RelieF algorithm 

to improve the model. The Fine KNN model maintains an efficiency of operation while detecting faults at a rate of 95.6%, 
which indicates the model’s accuracy. For this reason, feature selection and preprocessing serve a critical role in enhancing the 

model performance and suitability for real-time applications as affirmed by this research. Thus, this research opens up the 

possibility of integrating more complex models for machine condition monitoring at the edge devices. Future work will focus 

on obtaining more sophisticated classifiers and better preprocessing for improving fault detection performances in compact and 

power-efficient platforms suitable for the industrial IoT environment. 
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1. Introduction 

Drilling machines are fundamental in the industry and 

play a pivotal role in various applications. The main 
functionality of the drilling machines is simple but it is 

mandatory for a vast array of operations that are essential to 

the production of machinery, infrastructure, construction, 

and manufacturing. Drilling machines, while being vital, are 

also subject to mechanical wear and tear, which can result in 

downtime or operational failures if not adequately 

maintained. Since most industries depend heavily on these 

machines for several basic operations and also for efficient 

production, ensuring their reliability and longevity is 

of utmost importance. This has led to the increasing 

importance of machine condition monitoring and fault 

detection systems. 
In the past, methods such as manual sound monitoring by 

experienced operators were used to detect faults in machines 

through sound, vibration, or visual inspection. While this 

technique was useful, it heavily relied on human expertise, 

including the operator's experience, variability in human 

perception, hearing ability, and concentration, which lacked 

consistency. According to Brito et al. [1]An unsupervised 

approach for fault detection is highly crucial in industrial 

machinery. 

This research aims to find a solution to find anomalies in the 

drilling machines while addressing the following objectives, 

to investigate the feasibility of utilizing sound signals for 

fault detection in drilling machines, to develop a robust 

machine learning model for fault detection and diagnosis in 

drilling machines using sound signal analysis, to evaluate 

the performance of different edge machine learning 

algorithms for fault detection in drilling machines, to 

compare the results with existing fault detection methods to 

assess the effectiveness of the proposed approach. Edge 

machine learning refers to implementing and test the 

machine learning algorithms directly on the edge devices 
like sensors or IoT devices, which are directly in contact 

with the system instead of sending it to cloud computing. 

This method enables quick response and is beneficial for 

real-time monitoring. Achieving these objectives will 

develop a model to deploy on an edge device for real-time 

fault detection. 

2. Literature Review 

In the past few years, there has been great development 

in the ways of carrying out the automation of mechanical 

fault diagnosis and inspection. The origin of the problem of 
fault detection and diagnosis goes back to early industrial 

systems in which machines were primarily inspected 
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through human judgment and operator experience. This 

method improved over time along with the emergence of 

better systems. The first steps of the development of such 

automatic fault detection methods can be traced back to the 

nineties of the last century along with the inventions of 

vibration analysis and signal-related provision. 

Development of this direction paved the way for 

combinations of sensors and data acquisition systems which 

helped enhance remote monitoring and more precise 
detection of faults. 

The examination of acoustic signals as a diagnostic tool 

has become popular through its ability for remote 

monitoring. Altaf et al. [2] Pointed out the limitation of using 

vibration sensors on unreachable machines and suggested 

the classification of faults through audible signals, working 

with such methods as Kernel Linear Discriminant Analysis 

(KLDA), Support Vector Machines (SVM), and k-Nearest 

Neighbours (KNN). Same thing, Hongmei Liu, Lianfeng Li 

and Jian Ma[3] Performed sound fault diagnosis without 

time-consuming procedures concerning feature selection 

utilizing deep learning. In addition, the researchers noted the 
limitations of such approaches in terms of timely 

engagement due to the heavy requirements of spectrogram 

construction. However, in both research papers, the authors 

focused solely on the bearing fault and failed to broaden their 

focus area. 

To the above Shubita, Alsadeh, and Khater [4] 

Successfully forecasted faults at an early stage employing 

acoustic emission (AE) and reported 96.1% accuracy using 

a fine decision tree, highlighting the need for real-time 

monitoring via IoT devices. Their methodology closely 

aligns with the methodology used in the present study. Based 
on their comparative analysis, they opted for the Fine 

Decision Tree model for deployment because of its low 

computational overhead. However, this type of model is 

highly prone to overfitting, especially in the presence of 

noisy real-world data. In contrast, Fine KNN offers better 

generalization by considering neighborhood-based class 

distributions. Also, Senanayaka et al. [5] Improved acoustic 

signal processing with DEMUCS and 1D-CNN allowing 

effective signal faulting isolation and thus efficacy beyond 

blind source separation techniques. But this method requires 

high computational efficiency which is not suitable for edge 
devices. 

Many researchers have worked with vibration analysis 

techniques for fault evaluation. Swapnil K. Gundewar and 

Prasad V. Kane  [6] Examined bearing in terms of 

breakdown by applying denoised vibration signals and 

neural network with an accuracy of 99.58%, but have not 

fully implemented on edge devices. The use of high-end 

hardware in Gundewar and Kane’s study renders it 

unsuitable for real-time fault diagnosis on edge devices. 

Khalil and Rostam [7] Worked on a semi-automated 

vibration diagnostic method by applying Fast Fourier 

Transform (FFT) and ensemble ML models enabling them 
to provide enhanced early fault detection. Brandao and 

Costa [8] Also worked on feature-based misalignment faults, 

successfully extracted using Fast Fourier Transform’s 

technique with Support Vector Machine being the best of the 

other classifiers. These works center around the vibration 

signals whereas the present study is based on acoustic signal 

analysis as a cost-effective, flexible, and non-invasive 

alternative, making it more suitable for environments where 

sensor placement for vibration monitoring is impractical. 

Tran, Pham and Lundgren [9], on the other hand, focused 

on one of the most prevalent issues which is the lack of 

balance in the datasets in drill failure detection, and used 

CNN with Long Short-Term Memory LSTM and attention 
mechanism to attain an overall accuracy of 92.35%. Vununu 

et al. [10] Proposed a novel deep convolutional autoencoder 

(DCAE) architecture for power spectrum density image 

feature extraction that was effective in highly noisy 

environments. These approaches demonstrate the potential 

of deep learning in fault detection, yet there is a 

gap in developing efficient, interpretable, and real-time 

solutions that are capable of running under resource 

constraints. 

These were however not enough to make the last models 

stand-alone without limitations Hybrid methods have come 

up to remedy these traditional limitations. Kiran Vernekar 
and KV Gangadharan [11] Utilized neural networks and 

decision trees simultaneously for gearbox fault diagnosis 

and achieved an overall accuracy of 85.5% yet still 

managing the challenging dynamics of such machines. Liu 

et al. [12] Used a dynamic unscented Kalman filter to 

effectively utilize computational capacity on a rotary 

steerable drilling tool, lowering both the number of missed 

alarms and the amount of computation time. 

Jonguk Lee et al. [13] Extracted Mel-frequency cepstral 

coefficients (MFCCs) from the audio signals and also 

employed SVM for classification. Their dataset, which was 
gathered from an NS-AM-style railway point machine at 

Sehwa Company in Daejeon, South Korea, had an accuracy 

of 94.1 percent. Every sound in their dataset had a duration 

of roughly 5000 milliseconds. However, because each sound 

recording is so brief, their method did not yield a promising 

outcome when applied to our drill sound collection. 

3. Methodology 

In Figure 1, a schematic illustration of the research 

procedures is outlined. It starts with the audio recording 

made by a mobile phone placed 10 cm away from the testing 
instrument, a drilling machine. After this, the recorded audio 

Fig.1. Internal components of a drilling machine 
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signals are sent to a host PC with MATLAB for further 

processing. Further processing steps performed within the 

MATLAB software are depicted in Figure 2, highlighting 

the key stages and their interconnections. 

 

 

3.1. Data acquisition 
In this research, machine sound signals were classified 

into four categories: normal state, bearing fault, gears fault, 

and fan fault. These sound signals were obtained from 

varying states of a drill machine, employing a smartphone as 

a data acquisition tool. The data used in this study was 

obtained from an online repository made available on 

GitHub [14] containing sound signals under different fault 

conditions and was used as such without further data 

collection and pre-processing since collecting accurate data 

was difficult. According to the information provided on 

GitHub, the smartphone was placed approximately 10 cm 
away for recording, and the CROWN power tool (CT10128 

drill) was used for data collection. Each of 

the extracted features has 7115 values, and there is the same 

number of samples for each of the four fault conditions—

normal, bearing gear, and 

fan. Balanced samples like this ensured impartial training 

and testing of machine learning models. This secondary data 

was feature extracted, and used in training the machine 

learning model for diagnosing faults in MATLAB R2023a. 

[15] 

 

Fig.4. Bearing 

 

Fig.5. Gear 

3.2. Data preprocessing 

Preprocessing is one of the most important steps in the 

detection of faults using sound signals as a method since this 

is where raw data is fine-tuned in a way that eliminates as 

much noise as possible for the next analysis step. In this 

research, the pre-processing began with the Hanning 

window, especially for unknown signals, the results of the 

Data 
aquisition

Data 
preproc
essing

Feature 
evalution

Model 
training

Testing

Fig.2. Schematic overview 

 

Fig.3. Workflow 

 

Fig.6. Fan 
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fast Fourier Transform (FFT) are more realistic. The choice 

of the right window size is important because it determines 

the accuracy of the classification. The trade-off window size 

of 2048 points was selected to have an optimal trade between 

the analysis accuracy and memory limitation, and the 75 % 

overlap was used to improve consideration evaluation. 

Furthermore, a digital bandpass filter was used to eliminate 

the DC component from the sound signals using the cutoff 

frequencies of 20Hz and 20kHz as the anti-aliasing 
filter[16]. These steps aided in improving the quality of the 

signal to enhance feature extraction and to diagnose the fault 

while training the machine learning model in MATLAB. 

3.3. Feature evaluation 

A total of 16 features were extracted for each data 

window, with 10 features coming from the time domain and 

6 features from the frequency domain. Features extracted 

from the time domain are, RMS, Mean, Median, Variance, 

Skewness, Kurtosis, Shape factor, Crest factor, Impulse 

factor, and Margin factor, and from the frequency domain 

are Peak 1, Peak 2, Peak 3, PeakLocs1, PeakLocs2, and 

PeakLocs3. As a next step, extracted features were evaluated 
to identify the impact value of each feature on the model 

accuracy. For that, features were ranked using the RelieF 

algorithm.  

According to Figure 7 below, Peak 1 is the most 

important feature, followed by RMS, Variance, and Peak 3 

Figures 8 and 9 depict the difference in the amplitude 

between sound signals of the drilling machines with no 

defect and with a bearing defect. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

The figures below show histograms for Peak 1, Variance, 

Median and skewness for all the fault classes. 

 

 

Fig.7. Features ranking using RelieF Algorithm 

Fig.10. Histogram for Peak 1 

Fig.8. Time Domain signal for drill with no defects 

Fig.9. Time Domain signal for drill with defect in bearing 

Fig.11. Histogram for Variance 



 

25 

 

Sri Lankan Journal of Applied Sciences Vol.4.1 (2025) 21-30 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

As shown in the Figures above, each fault is represented by 
a different color. A histogram plot is used to verify that the 

faults are ranked correctly. If the features are not overlapped, 

as in variance and Peak 1, then they represent favorable 

features that will help the model in classifying the faults. For 

insignificant features, like the median and skewness, the 

faults are overlapped in the histogram. 

 

3.4. Model training 

Following the ranking stage, the selected features are 

prepared for use with machine learning models. Various 

configurations and feature sets are tested with different ML 

techniques. Due to the relatively small size of the dataset, a 

cross-validation trade-off with k=5 is used. The highest 

precision is achieved by the quadratic SVM, which attained 

an accuracy of 98.0%, followed by the bagged trees 

ensemble classifier at 98%, the Narrow Neural Network at 

97.8%, the fine decision tree at 97.2%, the Naïve Bayes 

classifier at 95.2%, and the Fine KNN algorithm at 94.1%. 

The efficiency of the classification models is assessed 

using a confusion matrix, as illustrated in below Figure 15 

where the column denotes the predicted class and the raw 
represents the true class. As a result, samples that are off-

diagonal are misclassified, and samples that are diagonal are 

correctly classified. 

 

3.5. Model testing and validation 

Model testing and validation is an essential process to 

show that produced FDD systems are reliable and accurate. 

From extracted feature values, 80% of the data was used for 

training, and the remaining 20% was used for testing. The 

model demonstrated accurate results while testing. 
However, as the CROWN power drill for which data was 

gathered was unavailable, real-time experimental validation 

in the laboratory was not possible. This is identified as a 

future scope of the work.  In the training phase, Quadratic 

SVM and bagged ensemble classifiers showed good 

classification accuracy. On the other hand, for testing and 

prediction Fine KNN model was selected as it provides a 

better trade-off between simplicity and performance. A Fine 

KNN was chosen over Quadratic SVM or ensemble bagged 

classifiers because of its lower computational complexity 

and quicker inference time which are vital for real-time 

performance on embedded hardware. Although Quadratic 
SVM and ensemble bagged classifiers showed higher 

accuracy, they are computationally expensive so not suitable 

for real-time applications, especially on resource-limited 

platforms. 

Specifically, Fine KNN provided a solution sufficiently 

accurate and effective enough to allow the developed fault 

diagnosis system to run on an embedded device. The 

proposed model was fine-tuned and validated on 

Fig.15.  Confusion matrix for Quadratic SVM model 

Fig.12. Histogram for median 

Fig.14.  Highest model accuracies obtained 

Fig.13. Histogram for Skewness 
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independently sampled data and model validation justified 

its stability and accuracy. The fine KNN model ensured high 

and stable accuracy overall while focusing on different faults 

such as bearing, fan, and gear, which makes it fit for real-

time monitoring of machines. 

 

In the below ROC Curve, the True Positive Rate 

(sensitivity) is plotted against the False Positive Rate, and 

each line represents a different fault or state. Each fault type 

has a corresponding Area Under the Curve (AUC) value, 

which measures the model's ability to distinguish between 

classes. Higher AUC values, close to 1, indicate better 

performance. According to this principle, the Fan fault has 

the highest AUC while the bearing fault has a slightly lower 

AUC value. Normal and gear fault also have high AUC 

values depicting a good distinguishability.  

The MATLAB codes used for all functions are available 

from the authors upon reasonable request. 

4. Results 

The model testing and validation provided the reliability 

of the developed models and depicted each of its ability to 

be deployed on edge devices. 

In the context of developing a fault detection model for 

drilling machines, the fine KNN model was selected based 

on a set of criteria that emphasized its effectiveness and 

suitability for deployment. This selection process was 
guided by the following key considerations: 

 Accuracy: The fine KNN model was characterized 

by high classification accuracy in different types of 

faults, which is important for reliable fault 

detection. 

 Computational Efficiency: Due to its low 

computational complexity, it showed shorter 

inference times which can be crucial for real-world 

applications on IoT devices. 

 Robustness: The model showed comparatively 

steady outputs when the parameters were given 
mixed data sets, which makes it viable for real-life 

use. 

 Scalability: This fine KNN model has exhibited the 

ability to scale up with increased data size which 

would make it relevant for complex fault detection 

tasks. 

 Ease of Implementation: Because of its simplicity 

of concept, it can be easily integrated with other 

systems, which is useful when it comes to 

deploying it on edge devices. 

 Feature Sensitivity: The model proved a way of 
using features that were extracted from audio data 

which was crucial in diagnosing other fault 

conditions such as bearings fans and gears. 

 Validation Performance: Cross-validation 

outcomes provided evidence of the model’s 

reliability and its ability to be generalized towards 

‘real-world’ practice settings, increasing the safety 

of the model. 

 Real-time Capability: Since the fine KNN model 

works perfectly in a real-time environment, the 

real-time detection and diagnosis of faults is 

feasible for monitoring the operation. 
This model is mostly suitable for well-labeled data and is 

commonly used for classification and regression tasks. For 

the prediction of the value of new data points, KNN looks at 

the k closest (most similar) data points in the training data. 

Although Quadratic SVM and ensemble bagged 

classifiers were marginally more accurate, Fine KNN was 

selected on theoretical grounds of computational efficiency. 

Fine KNN has lower training complexity, as it is a lazy 

learner and does not create a model during training. This 

reduces the front-end computational overhead, and it is thus 

preferred when speed of deployment or retraining must be 
prioritized.[17] In real-time fault detection scenarios, 

models must operate on data in real time with little latency. 

While KNN has greater inference time due to the 

computation required in distances, the 'Fine' mode, which 

limits the number of neighbors and operates in a lower-

Fig.16.  Confusion matrix for Fine KNN model 

Fig.17.  ROC curve for Fine KNN model 
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dimensional feature space (after feature selection), 

significantly reduces the computational overhead.  

Moreover, unlike ensemble methods, which involve 

combining multiple learners and can cause inference latency, 

Fine KNN involves a simple and direct classification 

process.[18] 

Quadratic SVM, although precise, involves 

computationally costly kernel computations for large data 

sets or high-dimensional data. Bagged ensembles, although 
robust, aggregate predictions from several base learners, 

further increasing inference time. Fine KNN thus balances 

accuracy and computational simplicity, thus more real-time 

deployable on devices with limited processing power. 

5. Discussion 

The Fine KNN machine learning model consisted of 85,380 

feature values with 7,115 observations as each contained 13 

feature values. Originally, the used dataset contained 16 

features; however, it was noted that the skewness, margin 

factor and mean are less relevant features for further analysis 

and, therefore, excluded from the study. The features mean, 
median, skewness, and margin factor ranked lowest in terms 

of importance in the feature ranking with the Relief 

algorithm. Upon deletion of the four features and retraining 

of the model, it achieved 95.6% accuracy. Although the 

median was identified as a borderline feature, removal of it, 

helped to improve the accuracy. The accuracy of the model 

improved from 94.1% in the development phase to 95.6 % 

which is a notable improvement after the feature reduction 

and can be seen in Figure 15. This improvement in accuracy 

indicates that the reduced feature set provided a clearer and 

more relevant signal for classification. 
The confusion matrix highlights that most 

misclassifications were related to bearing defects, 

suggesting that this fault type was less accurately learned by 

the model compared to other conditions such as healthy 

states, gear faults, bearing faults, or fan faults.  

The proposed model obtained an accuracy, 

of approximately 95.6% percent, which is relatively similar 

to the one obtained by Altaf et al. [2], yet, their work was 

limited to bearing faults only. However, this research 

integrates a more diverse range of faults such as bearing, fan, 

and gear indicating that the model is not restricted to certain 
conditions only. 

A comparison of the findings of this study with those 

from previous research by Shubita, Alsadeh, and Khater [4] 

That used similar research methods such as Acoustic 

Emission techniques, Machine Learning, and IoT-based 

real-time monitoring of faults revealed disparities. Although 

previous studies have shown very high accuracy in fault 

classification of 96.1%, the current study yielded different 

results. The variations between this research and past work 

show the problem of deploying machine learning techniques 

to real-world industrial domains and the external factors that 

can influence the capabilities of the diagnostic system. It is 
clear that these deviations highlight some problematic 

aspects in designing the fault detection systems and can 

show which aspects need to be further investigated to obtain 

better performance of AE and ML integration under various 

circumstances. 

In comparison with the research undertaken by Kiran 

Vernekar and KV Gangadharan [11] They have got accuracy 

of about 85.5% in detecting gear and bearing faults in a 

gearbox system. However, their approach did not take into 

account edge learning in machines and did not consider the 

effects of vibrations caused by the combustion engine. 

On the other hand, (Swapnil K. Gundewar and Prasad V. 
Kane[6] Research showing the highest accuracy for bearing 

fault diagnosis methods, but tied to high demand on 

computations makes it impractical for real-time applications 

in resource-constrained embedded systems. 

Capabilities in automatic fault detection have reached 

new heights owing to machine learning methods. Cited in 

the [19], ML algorithms like SVM, ANN, CNN, and RNN 

have their strong points when applied in predictive 

maintenance. Likewise, Kumar et al. [20] Reported 

employing SVM, ANN, and Bayesian classifiers for fault 

detection of drilling machines, emphasizing feature 

extraction and selection to boost performance.  
To that effect Nguyen et al. [21] Assessed ML models for 

diagnosing unbalanced and misalignment faults and 

concluded that Random Forest was the most applicable. In 

the same way, Jolfaei et al.  [22] Made use of the random 

forest algorithms for high-voltage water pumps with a 

diagnostic accuracy of 97% in real-time. Mayaki and Riveill 

[23] Suggested the use of feature extraction techniques to 

make deep neural networks suitable for 2D images. In their 

work, they demonstrated that with minimal data, 100% 

accuracy could be attained in the early stages of fault 

detection. 
The challenges of fault detection for the complex deep 

learning approaches have progressed as well. Panigrahi et al. 

[24] Focused on the performance of CNNs and RNNs for a 

variety of industrial fault cases remarking that such neural 

networks are robust against sensor misbehaviors and noise. 

Yu et al. [25] Suggested the use of one-dimensional 

convolutional neural networks (1D-CNN) for vibration 

signals and obtained a high accuracy as well as low costs and 

reliance on hand-engineered features. 

As Hongmei Liu, Lianfeng Li and Jian Ma [3] Observe 

that this flexibility has the added consequence that deep 
learning models do not necessarily have to go through the 

process of feature selection only to achieve reasonable 

accuracy. However, it is generally understood that depth 

learning methods entail higher memory and fluctuating 

performances over the operational conditions. This research 

however had to adopt the RelieF algorithm for feature 

ranking, as this reduced the number of features and enhanced 

the classifier outcomes. Due to the minimum subset of 

features, stable accuracy and real-time prediction capability 

were obtained, which is suitable for the edge ML model. 
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The proposed Fine KNN model does quite well, giving 
an accuracy of 95.6 % in fault detection and diagnosis. This 

method provides a strong possibility for classifying various 

faults in the rotating equipment, therefore making a great 

potential for practical use. However, it is future work that 

could compare the use of more elaborate classifiers like the 

Bagged classifiers or SVMs Quadratic since they are seen in 

preliminary research to be more precise and more resistant. 

The latter models may give even higher accuracy and 

robustness in fault diagnosis tasks. 

Moreover, from the findings of the research study, Fine 

KNN is equally shown to serve the purpose of selecting the 
most relevant features besides offering high performance. To 

enrich the model, future studies can consider the 

experiments based on the different preprocessing 

approaches, such as those mentioned by Qiao and Shu. [26]. 

It can be seen these methods aim at learning useful 

information from the noisy signals and they can pave 

the way to increase the model accuracy and also the stability 

of the model. Future developments can also adapt such 

sophisticated methods to enhance the detection and 

diagnosis functions of the model. 

This study utilized openly accessible data to train the 

machine learning models rather than original data being 
gathered in a laboratory setting. The reason for not gathering 

original data was that machinery with various types of faults 

was not available. It was just a binary difference—whether 

a fault exists or not—that could have been experimented on 

under available conditions. However, the primary objective 

of this research is to perform multi-class fault classification 

and not merely fault detection. Testing for the existence of a 

fault alone would be beyond the scope of this project. 

The importance of conducting experiments to obtain 

original data in the laboratory is recognized. Such validation 

would introduce realistic complexities and variations, 
resulting in a more comprehensive model evaluation. In the 

future, we will overcome these limitations by creating an 

experimental setup that is capable of simulating and 

capturing a range of fault types, thus enabling full 

experimental validation of the proposed models. 
This research paves a good foundation for future 

integration into real-time edge devices as a precursor to 

fostering practical industrial usage. In addition to showing 

how Fine KNN works and performs, the methodologies and 

findings contribute not only to the considerations of better 

classifiers and preprocessing but also to the future 

development of proposing more advanced methodologies. 

This evolution will be instrumental in the formulation of 

better approaches to Fault detection systems in the industrial 

processes in terms of improvements: sophistication, 

reliability, and real-time monitoring. 

6. Conclusions 

This paper presents the development of a fault detection 

and diagnosis model for three rotating elements of a 

commercial drill tool the bearing, fan, and gear. The process 

progressed from idea to an early implementation stage, with 

numerous machine learning methods and architectures 

tested to find the best classifier. It was concluded that 

the fine KNN model has the finest trade-off between 

accuracy and computational time and therefore was selected 

for the particular application. 

The entire diagnostic process, from data acquisition and 
preprocessing to the extraction of features and the 

classification of faults, was performed during the 

development phase. The fine KNN model which is chosen  

demonstrated high accuracy and stability, so it can be stated 

that the chosen fine KNN model can become a perfect 

solution for the diagnosis of machine faults based on the 

sound signals. 

To ensure that a fault diagnosis system that uses machine 

learning is implemented properly the following factors must 

be observed. The first condition is that there must be a 

sufficient amount of observational data related to the 
identified fault conditions, as it improves the model’s 

training dataset and generalization capabilities when 

considering various operating modes. Second, there is the 

Fig.18. Comparison of confusion matrices for the Fine KNN model before and after feature reduction. 
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need to ensure that high levels of preprocessing algorithms 

result in better-quality data. Methods like windowing with 

overlap and digital low/high pass filtering aid in attenuation 

of signal noise which is crucial for feature extraction. 

Third, it is important to choose the right feature 

extraction techniques and apply them to achieve high 

diagnostic accuracy. In this study, the fine KNN model was 

used because it provides high accuracy and is not resource-

demanding. The high accuracy and stability established in 
The model serves to support its application to real-world 

problems. The ability to diagnose faults from sound signals,  

coupled with operational stability adds credibility to the 

model for online machine condition monitoring. Besides, 

this approach paves the way to develop a device that can also 

prevent faults in real-time, and it is beneficial for 

constructing an economical and efficient monitoring system, 

which enhances the applicability of this method in industrial 

environments. 
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