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Abstract 

With an eye towards real-time health monitoring and early diagnosis, this review investigates how Artificial Intelligence (AI), 

Embedded Systems, and the Internet of Things (IoT) could be used in wearable healthcare technology. This study examines 

current developments in low-power embedded systems, edge artificial intelligence computing, sensor technologies, and IoT 

connections that all help to provide intelligent, energy-efficient wearable devices. Results show that although embedded 

microcontrollers offer continuous monitoring with low energy consumption, artificial intelligence-driven analytics increase 

diagnosis accuracy and enable predictive healthcare. IoT integration enables flawless data transfer for remote patient care, 

therefore supporting more responsive and easily available healthcare service. Important issues such data security, power 

constraints, ethical questions, and openness in AI decision-making still exist despite these developments. Emerging 

technologies such as Explainable AI (XAI), federated learning, blockchain-based security, and self-powered wearables as 

hopeful paths for addressing these constraints are highlighted in this study. The last point underlines how important it is to 

combine IoT, embedded systems, and artificial intelligence in wearable technologies to turn reactive medical practices into 

preventive healthcare approaches. Future studies should concentrate on developing trust, increasing openness, and boosting 

energy efficiency in AI-driven healthcare wearables if we are to guarantee effective deployment and general acceptance. 
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1. Introduction 

Various industries now rely on embedded systems; one 

of the most important fields is healthcare. The necessity of 
constant and real-time health monitoring technologies has 

been underlined by the growing frequency of chronic 

medical conditions like cardiovascular diseases, diabetes, 

and respiratory disorders [1]. Conventional healthcare 

approaches, which mostly rely on regular medical check-

ups, could not always identify early warning signals of 

important health disorders, therefore postponing diagnosis 

and treatments. Wearable devices are one of the most 

important IoT technologies in the present era [2]. Wearable 

devices are at the centre of every conversation in IoT-related 

healthcare systems, as they have the potential to bring about 

a major transformation. They are also seen to be the ideal 

strategy for monitoring, tracking, and detecting chronic and 

viral illnesses in the healthcare sector. Wearable devices, 

which are considered an essential aspect of the IoTs, let 

patients get proper medical care at the right moment [3].  
The impact of Collaborating Artificial Intelligence (AI) and 

embedded systems of proactive and personalized healthcare 

is becoming reality [4]. Wearable technology with smart 

sensors may constantly gather, examine, and transmit 

physiological data to medical professionals, thereby 

facilitating real-time monitoring, early disease 

identification, and fast medical action.  

1.1 Background and motivation 

     Integrating AI into embedded system devices is 

transforming the health industry. With an increase in chronic 

illnesses like diabetes and heart disease, early detection and 
remote patient monitoring are more important now than ever 

[5]. One of the problems associated with traditional 

medicine methods is their model based on timely checkups, 

which does not cater to the proactive diagnosis of diseases 

and leads to delays in identification and treatment [6]. Head-

mounted displays that can track physiological and 
biochemical variables non-invasively in real-time have 

shown promise in overcoming this challenge, which also 

makes them wearable health technologies [7]. These 

developments are an important leap forward in more 

affordable healthcare services, improving patient outcomes, 

and enabling a more advanced approach to treatment for 

public health. The use of AI-powered biosensor wearable 

devices produce the possibility of remote health monitoring 

and early intervention easier. Real-time data considerably 
improve diagnostic accuracy and enable timely medical 

action, enhancing patients’ life quality and standard [8], [9]. 
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     Recent research investigations have shown how well 

wearable sensor systems combined with artificial 
intelligence may maximize data processing and improve 

diagnosis accuracy. Particularly in real-time health 

monitoring [10], triboelectric nanogenerator (TENG)-based 

sensors have attracted interest for their self-powered sensing 

capabilities. Furthermore, greatly enhancing the 

accessibility and effectiveness of wearable healthcare 

systems are the spread of cloud-based platforms and the IoT. 

These technologies enable healthcare practitioners to make 

data-driven choices in real time by means of flawless data 
transfer, storage, and analysis; therefore, the expanding older 

population and the need for reasonably priced, continuous 

monitoring solutions push the development of AI-powered 

wearable healthcare systems more and more [11].  The 

worldwide frequency of hearing loss and its effects on 

cognitive and linguistic development highlight the necessity 

of creative wearable technology powered by artificial 

intelligence [12].  Likewise, disorders like Parkinson's 

disease show how urgently smart healthcare systems using 

wearable sensors and artificial intelligence for 

individualized treatment and disease management are 

needed [5]. 
      The demand for affordable, continuous monitoring 

solutions is rising as healthcare providers all over deal with 

budgetary and operational loads. Wearable ECG monitoring 

devices provide a quick approach for cardiovascular health 

evaluation and are ideas put out by [13]. Moreover, studies 

on wearable sensor-based embedded systems in health 

monitoring and emergency response have shown their 

importance, especially for vulnerable groups, including the 

elderly and severely sick patients [14]. By lowering reliance 

on costly hospital resources and hence boosting early illness 

diagnosis and intervention tactics, AI-powered wearable 
healthcare systems have the potential to transform patient 

monitoring [15]. The growing demand for non-invasive 

monitoring solutions has hastened the use of artificial 

intelligence in wearable healthcare devices, therefore greatly 

improving patient comfort and real-time illness 

identification. These developments support prompt medical 

treatments and enhanced healthcare accessibility, as 

highlighted in [16]. Wearable health monitoring 

technologies, powered by artificial intelligence-driven 

embedded systems, are set to completely change the field of 

patient care and provide proactive, individualized, and 

always-changing healthcare. AI and Machine Learning 

(ML) have transformed cardiovascular medicine, improved 

patient care, and streamlined medical procedures [17]. 
These technologies reduce the workload for medical 
practitioners by using advanced algorithms, therefore 

allowing more accurate diagnosis and effective treatment 

planning. Identifying risk factors, assessing health trends, 

and spotting acute events—all of which depend on AI-driven 

prediction models—ensure prompt treatments and enhanced 

patient outcomes by means of which timely interventions are 

guaranteed [18]. Moreover, the combination of artificial 

intelligence with wearable healthcare technologies has 

revolutionized the treatment of chronic diseases by 

providing remote monitoring solutions that close healthcare 

accessibility gaps and enable people to actively regulate their 

well-being [19]. As artificial intelligence develops, its 

ability to maximize tailored medication, improve decision-

making, and transform patient care stays unbounded, thereby 

bringing in a new age of intelligent, data-driven healthcare. 

1.2 Scope and objectives 

    This comprehensive survey explores recent advancements 

in AI-powered wearable sensor technologies for real-time 

health monitoring. The study systematically reviews state-

of-the-art developments, emerging trends, and key 

challenges in integrating AI, ML, and IoT with wearable 

health monitoring systems. The scope encompasses 

wearable sensor technology, artificial intelligence 

integration, IoT and cloud connectivity, healthcare 

applications, challenges and limitations, and ethical and 

security considerations. This survey does not focus on the 
fabrication of new wearable sensors but rather synthesizes 

knowledge from existing research to provide a structured 

understanding of the field.  

This survey aims to: 

 To provide a review of AI-powered wearable 

sensor technologies. 

 To analyse the impact of AI in enhancing health 

monitoring systems.  

 To compare different AI and ML techniques used 

in wearable health monitoring.  

 To examine the role of IoT in enabling real-time 

health monitoring. 

 To identify key challenges and future research 

directions. 

    By achieving these objectives, this survey aims to provide 

a comprehensive reference for researchers, engineers, and 

healthcare professionals interested in the intersection of AI, 

wearable technology, and health monitoring. 

 

1.3 Organization of the Paper 

     The remainder of this paper is as follows: Section 2 

provides an overview of wearable embedded systems in 

healthcare, covering key components, advancements, and 

power management. Section 3 discusses AI’s role in 

wearable healthcare, including data processing and key AI 

technologies. Section 4 explores AI applications in disease 

prediction, continuous monitoring, rehabilitation, and 

personalized medicine. Section 5  highlights challenges like 

data privacy, hardware constraints, model reliability, and 

ethical issues. Section 6 describes a comparative analysis of 
existing wearable solutions for the health sector. Section 7 

outlines future research directions, including explainable AI, 

energy-efficient models, and predictive analytics. Finally, 

Section 8 concludes the survey with key insights and final 

remarks. 
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2. Overview of Wearable Embedded Systems in 

Healthcare 

2.1 Definition and key components  

2.1.1 Definition 

      Wearable embedded systems in healthcare refer to 

minimized, intelligent electronic devices integrated into 

wearable accessories as shown in Figure 1 (such as 
smartwatches, patches, or smart textiles) that continuously 

monitor physiological parameters[2], [20]. These systems 

are combined with sensors, microcontrollers, and 

communication modules to track, process, and transmit 

health-related data in real time, enabling early diagnosis, 

disease management, and overall well-being improvement 

[10]. With the help of wireless systems, these wearable smart 

sensors can be personalized and be accessible to patients 

anywhere and anytime [21]. 
 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. Architecture of the Wearable Embedded System in Healthcare 

2.1.2 Key components  

     Wearable embedded devices consist of several essential 

components that work together to monitor and process 

physiological data effectively and efficiently.  

 

Sensors 

      Wearable sensors for monitoring health can be classified 

into physical sensors for measuring physiological signals, 

chemical sensors, and biosensors for measuring chemical 

signals [21], [22].  For example, physical sensors can detect 

small-scale pressures and motions such as subtle touch, heart 

pulse, and motions [23]. Biosensors are sensing for 

enzymes, blood, urine, sweat, etc. [24]. These biosensors are 

called body fluid analyzers [25]. By using a combination of 

biosensors and physical sensors, heart rate, blood pressure, 

body temperature, oxygen saturation (SpO2), glucose levels, 

and electrocardiogram (ECG)  [11], [13], [26], [27], [28].  
 

Microcontrollers (MCUs)  

     Microcontrollers (MCUs) and microprocessors (MPUs) 

serve as the core processing units in wearable healthcare 

systems, handling sensor data, executing embedded 

algorithms, and ensuring efficient system operation. 

Microcontrollers are typically used in low-power, compact 

devices due to their memory and I/O ports, making them the 
best solution for continuous health monitoring applications 

[29]. For example, the Cortex-M series and the Nordic 

nRF52840 are optimized for wearable technology with low 

power consumption [28]. Also, the Texas Instruments 

MSP430 microcontroller is commonly used in these types of 

ultra-low-power embedded devices [30]. Healthcare 

wearables require real-time analysis of physiological and 
chemical data. For that, edge computing-enabled MCUs, 

such as STMicroelectronics STM32, allow localized AI 

processing, reducing latency and dependence on cloud 

computing [31]. 
 

Wireless communication modules 

       Enables seamless data transmission between sensors 

and smart devices, as well as the cloud platforms. It’s called 

the Internet of Things in general. These modules facilitate 

real-time monitoring, remote diagnostics, and integration 

with IoT-based healthcare wearable devices. Bluetooth Low 

Energy (BLE), Wi-Fi, Zigbee, LoRa, and 5G Cellular are the 

most commonly used technologies in IoT [32]. BLE is a 

widely used technology because it offers low power 

consumption and is compatible with most smartphones and 

devices. [33]. 
 

Data storage & processing 

      Data storage and processing are critical components in 

wearable healthcare systems, ensuring real-time health 

monitoring, efficient data management, and AI-driven 

analytics. Wearable devices collect vast amounts of 

physiological data (e.g., heart rate, ECG, SpO₂) [11], [13], 

[28]  and either store it locally or transmit it to cloud servers 

for further processing. There are several methods to store 

data, such as local storage (on-device)—data stored in 

internal memory (Flash, SD card) before being processed—

and edge computing, which unifies resources that are close 

to the user in geographical distance or network distance to 

provide computing, storage, and network for application 

service [34]. Fog computing is based on providing data 

processing capabilities and storage locally to fog devices 

instead of sending them to the cloud. Cloud computing 

transfers all data to the cloud computing centre through the 

network and solves the storage problems in a centralized way 

[34].  
 

User interface 

    User interface is the most crucial component in wearable 

devices. It can be a smartphone application, website, or 

software application; also, it can be a display attached to the 

wearable device. The objective of the user interface is to 

provide real-time alerts and data visualization for users and 

healthcare providers [35]. 
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2.2 Evolution and technological advancements  

     The development of wearable healthcare technology 

started through wireless communication system integration 

with sensor networks, which established real-time health 

monitoring capabilities. Mobile communication together 

with Bluetooth technology developed in the early stages for 

data transfer, which then triggered the emergence of AI 

analytics in wearable healthcare [8]. The advancement of 

wearable ECG monitors became possible as mobile Internet 

and wireless sensor networks developed alongside each 

other [13]. 

     Wearable healthcare received significant expansion in 

artificial intelligence functionality during successive years 

because ML techniques started enabling predictive 

diagnostics and personalized medicine [19]. The application 

of AI-driven processes to wearable ECG monitoring systems 

delivered boosted accuracy together with enhanced 

efficiency and thus improved real-time cardiac health 

tracking reliability [15]. Non-invasive AI-powered 

monitoring systems have advanced as the leading technology 

innovation because they maintain high diagnostic accuracy 

without causing patient discomfort [36]. 
    Over the past few years, sensor technology has 

experienced remarkable advancement alongside these other 

developments. FTES sensors (triboelectric sensors) 

represent an exceptional advancement that provides 

sensitive measurements with efficient power usage and 

complete compatibility with AI-based healthcare systems 

[5]. TENG stands out because it enables electricity 

generation from mechanical energy to operate as both a 

power source and a self-powered sensor [37]. 
    AI-powered practices together with big data and sensor 

technology systems now allow for advanced real-time 

healthcare observation. The combination of AI analysis with 

big data has improved diagnosis precision, thus enabling 

prompt medical interventions according to [38]. Patient 

monitoring periods expanded through low-power AI-

assisted wearable devices, which diminished the need for 

hospital visits and medical interventions [28]. Modern 

wearable healthcare devices keep advancing toward new 

limits for simultaneous monitoring and predictive conditions 

and premature disease recognition. [28]. The combination of 

wireless sensors, sensor networks, and artificial intelligence 

research has built a cross-disciplinary concept of ambient 

intelligence, addressing modern healthcare challenges 

through intelligent, interconnected monitoring solutions 

[39]. 
 

2.3 Power management and energy efficiency 

      Wearable healthcare devices require portable power 

systems because energy efficiency stands as an essential 

design factor. The sensors inside wearable medical devices 

need to function indefinitely since their power consumption 

needs optimization to meet operational requirements. [8] 
revealed that battery-powered prototype devices operated 

continually for 9 hours from a 9.6V power source, according 

to their research. The urgent requirement demands new 

methods to prolong battery life while improving the usability 

of devices used in practical applications. 
     The energy harvesting field now offers sustainable 

solutions through TENG technology, which researchers [5] 
have studied. The self-powered system transforms 

mechanical energy into electric power to maintain 

continuous health monitoring operation. TENG technology 

cuts down dependence on conventional batteries, thus 

delivering a sustainable system for managing wearable 

device power that provides long operational times with low 

energy loss. AI models need optimization for embedded 
systems power consumption to enable effective wearable 

healthcare technology. The importance of developing 

energy-efficient artificial intelligence algorithms for 

prolonging battery life during real-time health monitoring 

forms the core of the research of [15] and [27]. Devices that 

implement optimized AI architecture achieve more efficient 

data processing and minimize power usage because they 

reduce computational overhead. The performance-efficiency 

ratio must be optimal to succeed in extended wearable 
healthcare implementation.  

      Edge computing technology helps wearable systems 

operate more efficiently when it comes to power 

management. Devices conserve power along with lowering 

their data transmission overhead by conducting machine 

learning inference at the local device level according to [19]. 

Energy-efficient processing methods can be achieved 

through IoMT-edge computing, according to [27], when 

using TinyML. The approaches implemented at specific 
locations enable faster decision-making without 

compromising battery longevity, which makes real-time 

health checks possible. Devices must be designed efficiently, 

and communication systems need implementation of 

optimized protocols to minimize power consumption. The 

implementation of ZigBee communication and data 

compression techniques within an ECG monitoring system 

helped extend its battery life to exceed 160 hours, according 

to [40].  
     Additional power savings occur through the removal of 

unneeded circuits, including the DRL circuit, which 

maintains signal quality. New innovations enable the 

development of efficient wearable healthcare platforms that 

operate for longer durations. The combination of wireless 

communication systems enables a balance between energy 

conservation and efficiency of data transmission speed. The 

MEDIC system developed by [41] implements Bluetooth 

WBAN technology for sensor connectivity that preserves 
system power consumption. Wearable devices use low-

power wireless protocols to establish uninterrupted 

connectivity and increase battery duration, thus providing 

better reliability for extended health monitoring operations. 

Wearable healthcare innovation depends on uniting AI-

driven power-saving models with purposeful hardware 

engineering and green energy technology solutions. 

According to [36] and [28], the optimization of power 

systems in AI-powered wearables serves to improve device 

utility and user satisfaction. The future of wearable 
healthcare monitoring stands to achieve record-breaking 
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efficiency along with sustainability and practical operation 

because of integrated advanced energy-efficient systems. 

3. Role of AI in Wearable Healthcare Systems 

3.1 AI-powered data processing in wearables 

     Future technology will allow wearable devices to foresee 

health risks along with pre-detecting anomalies early and 

react immediately to emergency medical conditions. The 
recent AI-driven advancements start to turn this futuristic 

healthcare scenario into reality. Machine intelligence 

enabled by deep learning can interpret biosignals, while 

Edge AI provides instant decisions through wearable 

technology, which transforms health monitoring systems. 

Deep learning models serve as the fundamental force behind 

this ongoing transformation of clinical care operations. [5] 
established how a CNN-BiLSTM-Attention model hybrid 

system enhances posture recognition together with identity 
verification processes for obtaining precise real-time results. 

The research paper by [36] explains how CNNs lead to 

improved bio signal processing, which results in immediate 

physiological data interpretation. The analysis capabilities of 

AI for ECG remain undiscovered despite [13] preliminary 

findings about AI detection. Current research by [42] shows 

Transformer models can produce state-of-the-art results in 

ECG classification, thus making wearable devices more 

dependable than ever. 

     The other two essential elements, together with accuracy, 

contribute to the solution: speed and operational efficiency. 

Edge AI introduces machine learning near the user, as 

explained by [19], to reduce wait times and power 

diagnostics on handheld systems. [17] demonstrate Edge 

AI's ability to detect anomalies in real-time through their 

work, which lets healthcare interventions happen instantly in 

wearable devices. The MEDIC system shows this approach 

according to [41] through its integrated embedded inference.  

An engine that autonomously processes sensor data to 

generate on-the-spot healthcare decisions. 
     Wearable technology evolves into strong medical tools 

that detect illness risks through continuous data streams. 

Deep learning models strengthen wearable technology 

identification skills for diseases so they can serve as critical 

tools for disease prevention, according to [38].  The 

combination of artificial intelligence analytics in wearables 

shortens the response time to handle severe conditions such 

as sepsis, according to research by [28].  According to [39], 
artificial intelligence systems have the immediate ability to 

detect abnormal health patterns, which leads to life-saving 

opportunities for timely interventions. 

     The application AI in wearables serves to analyze 

complex sensor data as it is collected in real time. The 
analysis of prolonged health records through deep learning 

approaches provides vital information from extensive 

streams, according to [43].  The researchers [44] prove that 

AI classification systems boost data handling operations 

through lower cost transmission and superior system 

performance. The study by [45] proves that AI processes 

sensor data within 300 milliseconds, thus enabling 
immediate healthcare analysis. 

In addition to personal gadgets, AI's impact encompasses 

cloud-based wearable healthcare solutions. [46] introduces 

the WISE framework as a machine learning platform that 

processes sensor data stored in the cloud so that distant 

health monitoring becomes practical on a large-scale degree. 

[12] prove that AI improvements result in enhanced 

performance speed and measurement clarity, thus enabling 

user-based smart health tracking worldwide. Artificial 

intelligence transforms wearable healthcare through its shift 

from basic observation to preventative actions, including 

automatic cognitive illness detection and fast anomaly 

detection alerts. Deep learning in combination with Edge AI 

as well as cloud intelligence helps wearables evolve to 

become life-saving devices that enable a smarter, healthier 

future, which includes real-time active protection of health. 

3.2 Key AI technologies in wearable health monitoring  

     Wearable health monitoring systems have significantly 

evolved with the integration of AI technologies, enhancing 

their predictive accuracy and real-time diagnostic 

capabilities. Various ML and deep learning (DL) techniques 

are applied to process physiological data, recognize patterns, 

and generate reliable health insights. Key AI methods 
include classical ML approaches such as support vector 

machines (SVMs) and decision trees, advanced deep 

learning architectures like convolutional neural networks 

Table 1  

Key AI Technologies in Wearable Health Monitoring 

 

Category Techniques Applications References 

Machine Learning Logistic Regression, SVM, KNN Heart disease diagnosis, real-time data 

processing 

[9], [10],[31], [46], [47], [48], [50] 

Deep Learning CNN, RNN Pattern recognition, chronic disease monitoring [31], [47], [48],[49] 

Distributed Learning Federated Learning Privacy-preserving AI training [17], [31], [48] 

Predictive Analytics Time-Series Forecasting Advancements in wearable monitoring systems [49], [50] 

 



 

 

46 

 
Sri Lankan Journal of Applied Sciences Vol.4.1 (2025) 41-54 
 

(CNNs) and recurrent neural networks (RNNs), and novel 

techniques such as federated learning for privacy-preserving 
AI model training. Table 1 shows a summary of the AI 

technologies employed in wearable health monitoring, as 

highlighted in recent research. 

4. Applications of AI in Wearable Healthcare 

Monitoring 

     The use of AI-driven wearable devices has risen for 

detecting diseases before their onset and making diagnoses 

in the initial stages. AI algorithms prove essential for 

detecting patients who will show positive responses to 

cardiac resynchronization therapy (CRT) and forecasting 

right ventricular (RV) failure among individuals receiving 
left ventricular assist device (LVAD) implants [53]. 

Rehabilitation wearables empowered by AI provide two 

essential solutions: the monitoring of gait patterns for 

multiple sclerosis patients and the support of visually 

impaired mobility needs, which enables stronger assisted 

living possibilities [54]. The HTSMNN AI model has shown 
excellent results for predicting Parkinson’s disease, while 

deep learning systems prove effective in measuring anxiety 

[54]. 

     The integration of wearables with AI has produced 

substantial changes in both preventive medical care and 

continuous disease management. Posture correction 

feedback in sports rehabilitation receives immediate 

feedback from AI-driven systems to enhance assisted living, 

which also supports better recovery monitoring. These  

 

tracking systems monitor chronic disease parameters in real-

time to deliver healthcare that delivers personalized 
interventions. Research shows that artificial neural networks 

powered by AI reach a 93.8% accuracy rate for managing 

chronic obstructive pulmonary disease (COPD) according to 

[49]. 

 

    The combination of AI via wearable systems allows for 

the real-time acquisition and forwarding of heartbeat and 

temperature vital signs to hospital databases alongside 

mobile devices [8]. The predictive analytics feature in 

wearable AI technology enables the detection of dangerous 

medical situations ahead of time, which improves healthcare 
emergency readiness [28]. AI-powered human activity 

recognition (HAR) in wearables facilitates early detection of  

movement disorders, enabling timely medical interventions 

[9]. 

     Wearables that incorporate advanced AI models are 

making substantial progress in the areas of healthcare 

delivery and disease diagnosis. A hybrid CNN-BiLSTM-

Attention model has been shown to be highly accurate in 

posture recognition, a critical component of real-time health 

monitoring [5]. In the same vein, an Internet of Medical 

Things (IoMT) system that was created for Parkinson's 

Disease patients incorporates AI-powered feedback 
mechanisms, which enables continuous health monitoring 

and personalized care [5]. The detection of cardiovascular 

anomalies has been further facilitated by AI-enhanced 

predictive models, which have ensured that medical 

interventions are conducted in a timely manner [44].  

      Smart sensor technology, including TENGs, has been 

introduced by recent advancements in AI-enhanced 

wearables. TENGs are capable of capturing physiological 

signals, such as respiration, to facilitate early disease 

diagnosis [37]. Real-time physiological data is provided by 

TENG-based continuous monitoring platforms, which serve 
as a solid foundation for AI-driven analytics. The WISE 

system, which employs artificial intelligence to forecast 

cardiac disease based on data from ubiquitous sensors, 

serves as an illustration of the potential for AI models to be 

further refined to enable more precise predictive diagnostics 

[46]. 

AI-driven technologies are at the vanguard of healthcare 

innovation, revolutionizing the detection, monitoring, and 

management of diseases. AI-powered wearable technology 

enhances preventive medicine and improves patient 

outcomes by incorporating real-time monitoring, predictive 

analytics, and personalized intervention strategies. AI in 

ubiquitous healthcare monitoring anticipates a future of 

proactive, data-driven healthcare solutions as advancements 

persist [36], [39]. 

5. Challenges and Limitations 

5.1 Data privacy and security concerns 

   Wearable healthcare systems under AI control face key 

challenges regarding data security and privacy because they 

consistently collect and handle personal health information, 

which needs secure transmission. The prevention of cyber 

threats along with misuse depends on robust encryption 
combined with secure transmission protocols [53]. [55] and 

[48] state that these issues function as fundamental obstacles 

to AI implementation in healthcare when regarding 

wearables that share real-time patient information. [54] 

specifies how privacy problems among elderly adults create 

barriers to mass adoption, so stronger security systems must 

be implemented. 

     Within wearable devices, Bluetooth offers encryption 

and authentication services, which serve as basic safeguards 

for data transfer [8]. More security methods need 

implementation above the baseline protection. The 
deployment of artificial intelligence security frameworks 

protects patient data privacy through advanced encryption 

techniques, according to [39]. Device-based AI processing 

protects patients by reducing the vulnerabilities of cloud 

storage transmission systems, which increases information 

confidentiality [44]. Secure Shell (SSH) establishes 

encrypted transmission while requiring additional security 

protocols because it consumes substantial resources [41]. 

User trust, in addition to broad market adoption, 

fundamentally depends on strict regulatory compliance [56]. 

The solution of federated learning has become a major 

approach for protecting privacy in artificial intelligence 
applications used for wearable healthcare monitoring [42]. 

The data-processing method of federated learning combined 

with aggregated model updates serves to minimize potential 
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dangers that centralized storage methods would create. 

Differential privacy mechanisms upgrade system security 
through data-noise addition, which protects confidentiality 

but maintains useful AI analytical results [17]. 

     The secure blockchain system protects wearable health 

data. [45] and [49] advocate for blockchain as a security 

solution for medical data due to its distributed network 

defense mechanisms, which prevent unauthorized 

modifications. Nevertheless, the necessity of ongoing 

progress in privacy-preserving blockchain solutions is 

underscored by the persistence of dangers such as 51% 

attacks. Robust security frameworks will be essential for 

ensuring regulatory compliance and user trust as AI-driven 

wearables become more prevalent in healthcare. Real-time 
predictive health monitoring, AI-driven personalized 

interventions, and secure data encryption will be essential in 

the development of wearable healthcare technologies [57]. 

The integration of federated learning, blockchain, and 

advanced encryption techniques in ubiquitous healthcare 

systems can effectively protect patient data, ensuring the 

long-term viability, privacy, and security of digital 

healthcare. 

5.2 Energy efficiency and hardware constraints  

    The practicality of wearable healthcare systems heavily 

relies on achieving superior energy efficiency and hardware 

durability when they execute energy-intensive AI 

technologies. Research by [50] proves that sweat-activated 

batteries maintain stable performance during 600 bending 

cycles, thus proving their excellent durability. However, 

other durability concerns persist. The durability of batteries 

can be negatively impacted by two factors: inflation during 
90,000 rolling cycles and poor performance through 

weakened Ag paste interconnections without underfill, 

according to [58]. 

     Human movement velocity of 1 Hz stands as a barrier to 

electromagnetic harvester size reduction since it prevents 

effective powering of artificial intelligence-enabled 

wearable systems [59]. The rapid replacement of traditional 

batteries in wearable technology is needed because these 

batteries present environmental problems and inflexibility to 

the fabric [60]. The energy density constraints facing self-

powered wearable equipment serve as hindrances to 
deploying AI healthcare monitoring solutions based on [61]. 

     Researchers develop different new methods to handle 

these barriers yet do not resolve all performance issues. The 

5.2 mW system reported in the [62] study incorporates solar 

harvesting functions yet confronts power delivery efficiency 

problems. Pyramid molding systems decrease TENG-

powered wearable devices' sensitivity and restrict their 

ability to grow at a large scale [10]. The AFE for long-term 

ECG monitoring developed by [63] functioned at 560 nW 

but faced hardware deterioration from rGOₓ coatings 

because of their power efficiency versus sensor life balance 

issue. TENG technology received analysis by [5] to evaluate 
its capability of generating power for continuous patient 

health tracking through wearable systems. When employed 

in artificial intelligence processing according to [37], 

humidity proves to be a major obstacle that diminishes 

performance efficiency and reliability for triboelectric 
nanogenerators. 

     To maximize battery performance in wearables, 

manufacturers need to choose their hardware components 

efficiently. The study by [12] established the significance of 

ESP-8266 microcontrollers as a power-saving technology 

solution for healthcare equipment by increasing battery 

duration and operational reliability. According to [8] the 

wearable system reached 9 hours of continuous operation 

through its 9.6 V battery power, although present power 

solutions show their bounds. 

     Wearable healthcare technology faces major difficulties 

because of energy efficiency limitations combined with 
hardware-related restrictions. The next-generation 

wearables require work on how to resolve scaling challenges 

and environmental effects and material deterioration in 

addition to improvements in self-charging mechanisms and 

energy-efficient computer chips and power alternatives. 

5.3 Accuracy and reliability of ai models 

    Healthcare wearable devices encounter multiple complex 

reliability obstacles because of their accuracy 

inconsistencies as well as unbalanced data and complex 

interpretability barriers. The Wearable 2.0 data imbalances 

are analyzed in [47] which shows that emotion detection has 

an accuracy rate of 81.28% for sadness identification. [64] 

show that CheXNet reached an F1 score of 0.435, better than 

radiologists yet its ability to process lateral views remains 

absent creating doubts about wearable monitoring systems 

reliability. 

Research validation studies enable bridging gaps 
between wearable AI model development and practical 

implementation according to [65]. [66] present evidence 

showing that AI technologies struggle most with female 

patients and people who have low blood pressure, requiring 

more diverse training data for better model reliability. [67] 

proposed a CNN-LSTM hybrid approach to address noisy 

data in Human Activity Recognition, which resulted in a 

high 99.4% accuracy level for healthcare application 

reliability enhancement. Standard models decline 20% 

accuracy according to [68] when dealing with sensor 

disturbances and their corresponding reliability gap. The 
StatOpt framework developed by their team monitors 

reliability issues while providing 50% additional reliability 

performance for healthcare monitoring through theoretical 

certification standards. 

      The introduction of new techniques has not resolved the 

problem of inaccurate classification. A GRU model achieves 

75.7% accuracy at gait pattern classification yet exhibits 

major misclassification errors that reach 32.7% for Class 2 

and 30.8% for Class 3 according to [69]. Real-time health 

monitoring reliability faces difficulty because [70] detects 

comparable discrepancies in dermatological AI applications. 

Data poisoning impacts AI reliability according to [71], 
while Random Forest proves to be the most reliable model 

under such conditions, underlining the need for wearable AI 

systems to be robust. 
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    Beyond accuracy, interpretability remains a key 

challenge. [72] argue that while AI excels in diagnostic 

precision, the opacity of deep learning models hinders trust 

in wearable health monitoring. In contrast, [73] 

demonstrates the superior reliability of IBCN over 

conventional methods due to its uncertainty modelling, 

fostering greater confidence in AI-driven wearables. 

Meanwhile, [74] highlights the foundational role of wearable 

sensor validity and reliability, essential for ensuring AI-

generated health insights remain trustworthy. 
     Collectively, these studies illustrate the intricate balance 

between accuracy, data integrity, and interpretability in 

wearable AI systems, underscoring the ongoing need for 

advancements to achieve truly reliable healthcare 

monitoring. 

6. Comparative Analysis of Existing Solutions 

    The development of AI-powered wearable systems has 

led to various solutions designed for healthcare monitoring, 

fitness tracking, and disease prediction. These solutions 

leverage different machine learning models, sensor 
technologies, and data processing techniques to enhance 

accuracy and usability. However, variations in performance, 

reliability, and adaptability exist across different systems, 

necessitating a comparative analysis. This section examines 

existing AI-powered wearable systems, evaluates their 

strengths and weaknesses, and benchmarks their 

performance based on key metrics such as accuracy, 

response time, and robustness. 

6.1 Review of current AI-powered wearable systems 

The rapid advancements in AI-powered wearable devices 

have led to significant improvements in remote health 

monitoring, disease prediction, and patient care. Various 

studies have explored different aspects of wearable 

healthcare technology, including sensor performance, AI 

algorithm efficiency, and practical applications. The Table 2 

presents a comparative analysis of existing AI-powered 

wearable solutions, highlighting their key focus areas, major 

findings, and the datasets or technologies used in their 

development. 

7. Future Research Directions 

7.1 Integration of explainable AI (XAI) in healthcare 

wearables 

     Healthcare wearables now benefit from explainable AI 

technology, which drives AI-based monitoring to new levels 

of trustworthiness as well as clinical transparency. XAI 

interpretation abilities are critical requirements to gain 

regulatory approvals and enhance user acceptance as well as 

meet ethical standards. ExoCOVID according to [75], serves 

as the fundamental achievement for trust building in 
explainable systems, while [53] showcases XAI as central to 

enhancing usability and interpretability in AI-powered 

wearable technology. According to [49], XAI functions as 

an essential tool for improving trust during healthcare 

applications of AI-driven wearables because of their 

interpretability challenges. 

     The inclusion of XAI within wearables creates fresh 

diagnostic opportunities that help ensure transparency in 

their operation. According to [76], the future will see AI 

together with XAI as it detects unrecognizable arrhythmia 

patterns to improve cardiac monitoring interpretability. 
According to [77], wearable healthcare technologies need 

actionable explanations running at all times to enhance user 

trust and system acceptance. Research conducted by [78] 

investigators exposed how explainable AI boosts stress 

detection transparency, which stands as an essential element 

for medical organizations to accept AI-controlled wellness 

tracking programs. 

Table 2  

Comparative Analysis of AI-Powered Wearable Healthcare Systems 

 

Key Focus  Findings/Contributions  Dataset/Technology Used Reference  

AI-powered wearable 

applications in healthcare 

AI enhances remote monitoring, disease prediction, and 

enables continuous, real-time assessment of 

physiological parameters. 

Various AI-powered wearable devices, 

health monitoring devices 

[40], [53], [55] 

AI-powered seism 

cardiogram signals and cloud 

analytics 

Potential for predicting HF hospitalization and 

improving patient outcomes using AI-based seism 

cardiogram signals and cloud analytics. 

Seism cardiogram signals, cloud-based 

AI analytics 

[49] 

AI algorithms in wearable 

health monitoring 

Deep learning models significantly outperform 

traditional approaches, enhancing activity recognition 

and healthcare monitoring. 

Wearable sensor data (HAR datasets), 

wearable motion sensors 

[44], [66] 

Wearable sensor technologies FTES outperforms existing sensors in sensitivity, 

response time, stability, and enhances sensor disturbance 

handling without added computational cost. 

FTES vs. standard wearable sensors, 

StatOpt framework, HAR datasets 

[5], [67] 
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      Scientific teams work toward extending XAI capabilities 

in wearables by creating new innovative methods to provide 
explainability alongside user trust. [45] recommend 

healthcare trackers should adopt SHAP and LIME 

frameworks because they enhance both interpretation 

capability and user acceptance. [79] advance Grad-CAM 

technology by adding new capabilities that enhance pain 

recognition explainability and make AI healthcare 

monitoring more acceptable to clinical professionals. The 

research of [54] shows that diagnostic transparency 

advances through metaverse applications of Grad-CAM and 

LIME, which opens opportunities for trustworthy AI 

healthcare solutions. 

      Wearable devices need XAI integration for the 
foreseeable future because they have advanced beyond 

innovation status. XAI emerges as a vital essential for future 

development because it will deepen the usability and trust 

levels in AI-driven monitoring systems, according to [54]. 

[42] advocates model interpretation of AI systems as a 

pivotal requirement for clinical approval and regulatory 

conformity to establish medical wearable acceptability. The 

core aspect of explainable AI drives the advancement of AI-

driven healthcare monitoring because it delivers ethical 

solutions that combine intelligence with clinical reliability 

and transparency. XAI will shape the upcoming era of 
healthcare monitoring through personalized approaches 

while using effective methods and delivering accountable 

solutions by closing the bridge between AI technological 

advancement and medical practitioner trust. 

 

7.2 AI-Driven predictive analytics for proactive 

healthcare 

   The integration of AI-driven predictive analytics in 

wearable healthcare devices is revolutionizing health 

monitoring and risk management. By leveraging machine 

learning, reinforcement learning, and cloud-based AI, 

researchers are paving the way for proactive healthcare 

solutions that anticipate health issues before they become 

critical. [47] introduces Wearable 2.0, a cloud-based 

learning system that proactively manages health risks, 

setting the stage for advanced AI-driven healthcare 

solutions. Similarly, [64] highlight the predictive power of 
CheXNet, demonstrating how AI can proactively detect 

pneumonia, a model that could extend to wearable 

monitoring systems. [52] envisions AI wearables enhancing 

predictive analytics, a crucial advancement in shifting 

healthcare from reactive to proactive care. 

     Expanding the capabilities of AI-powered predictive 

analytics, [10] develop wearable systems that detect 

Parkinson’s disease and fall risks, showcasing their potential 

for broader proactive healthcare applications. [80] integrate 

Romance Languages and Linguistic Theory (RLLT) and 

Analytical Hierarchy Process (AHP) methodologies to 

create a predictive framework for coronary heart disease 
(CHD) management, providing early risk assessment and 

intervention strategies. [81] enhance their Multi-Criteria 

Decision-Making (MCDM) AHP symptom checker with 

fuzzy logic methods, strengthening diagnostic accuracy and 

early disease detection in wearable healthcare. 
      Innovative AI methodologies continue to drive 

advancements in predictive analytics for wearables. [82] 

explore Social Network Analysis (SNA) to develop 

predictive AI models, setting a foundation for community 

healthcare management (CHV). [66] propose reinforcement 

learning to strengthen predictive analytics, enhancing AI 

wearables' ability to anticipate and mitigate health risks. 

Furthermore, [72] demonstrates AI’s ability to predict 

sepsis, a capability that could enhance early intervention in 

wearable healthcare systems. 

      Future research is essential to refine and validate AI’s 

predictive potential in wearables. [65] calls for longitudinal 
studies to confirm the reliability of AI-powered predictive 

analytics in real-world healthcare applications. [70] 

emphasizes the need for AI-supported predictive tasks, 

enabling wearables to provide personalized early warnings 

for individuals at risk. Additionally, [71] explore generative 

neural networks for data augmentation, a breakthrough that 

could enhance the accuracy of predictive models in wearable 

healthcare. As AI-driven wearables continue to evolve, 

predictive analytics is becoming the cornerstone of proactive 

healthcare. By shifting the focus from diagnosing illnesses 

to preventing them, wearable AI is poised to empower 
individuals and healthcare professionals alike, making real-

time health monitoring, early risk detection, and preventive 

care the new standard. 

8. Conclusion 

     The combination of Artificial Intelligence, embedded 

systems, and the Internet of Things within wearable 

healthcare technology operates to revolutionize real-time 

health monitoring, disease prediction, and individualized 

treatment methods. Wearable technology with AI algorithms 

combines smart sensors with edge computing and IoT 

connectivity to provide extended health monitoring 
alongside early disease warning systems for doctors to 

perform proactive healthcare measures. These innovations 

drive better diagnosis results while maximizing treatment 

approaches and leading to improved patient care, which 

delivers both improved healthcare efficiency and 

accessibility and tailored medical solutions. 

     Wearable healthcare relies on embedded systems to 

process data in real-time with low power requirements 

because of microcontrollers and energy-efficient artificial 

intelligence models and wireless communication 

capabilities. These systems gain durability from IoT and 
cloud computing integration, which allows healthcare 

professionals to make decisions through data analysis and 

stored data communication. Wearable devices now employ 

predictive analytics and machine learning algorithms to spot 

health risks beforehand, which allows early warnings while 

searching for abnormalities and thus shifts medical care from 

standard response to active prevention. 

      The advancement of medical technologies continues 

while medical systems need improvements to secure data 

and become more energy-efficient and reliable and follow 
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applicable regulations. The widespread adoption of wearable 

healthcare solutions depends on resolving these factors 
through the implementation of Explainable AI and federated 

learning and blockchain security and energy-efficient AI 

architectures. New developments in self-powered energy 

harvesting alongside embedded system miniaturization will 

boost the practicality of AI-driven wearables. 

    Technical developments in AI-powered wearables will 

target improved data transparency and safer computing and 

instantaneous processing to secure their use in medical care 

by patients and healthcare providers and institutions. 

Wearable healthcare devices powered by this integration of 

AI and embedded systems and IoT innovations are expected 

to transform future medicine with their data-driven smart 
healthcare solutions. 
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